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The Validity of the Reynolds
Equation in Modeling Hydrostatic
Effects in Gas Lubricated Textured
Parallel Surfaces

Microdimples generated by laser surface texturing (LST) can be used to enhance perfor-
mance in hydrostatic gas-lubricated tribological components with parallel surfaces. The
pressure distribution and load carrying capacity for a single three-dimensional dimple,
representing the LST, were obtained via two different methods of analysis: a numerical
solution of the exact full Navier-Stokes equations, and an approximate solution of the
much simpler Reynolds equation. Comparison between the two solution methods illus-
trates that, despite potential large differences in local pressures, the differences in load
carrying capacity, for realistic geometrical and physical parameters, are small. Even at
large clearances of 5% of the dimple diameter and pressure ratios of 2.5 the error in the
load carrying capacity is only about 15%. Thus, for a wide range of practical clearances
and pressures, the simpler, approximate Reynolds equation can safely be applied to yield

reasonable predictions for the load carrying capacity of dimpled surfaces.
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Keywords: surface texturing, gas lubrication, Reynolds equation

1 Introduction

Surface texturing in general and laser surface texturing (LST)
in particular has gained an increasing interest in recent years as a
means for enhancing tribological performance [1]. Several theo-
retical models based on solving the Reynolds equation, e.g., [2-5]
were developed so far for LST tribological components. Although
these models showed good agreement with experimental results
(see [3-5]) it was argued on several occasions that the Reynolds
equation may not be valid for the particular LST parameters in use
and that the full Navier-Stokes (NS) equations should be em-
ployed. The LST produces on one of the mating surfaces a large
number of microdimples having typically a depth over diameter
ratio of order 1072—107", pitch over diameter ratio of order 100,
and depth over clearance ratio that can reach an order of 10'.
Thus, a discussion of the validity limits of the lubrication theory
and the Reynolds equation for solving LST problems seems
appropriate.

A detailed analysis of the lubrication theory validity, its limita-
tions, and the effect of fluid inertia was performed in 1985 by
Tichy and Chen [6] for the case of an infinitely long slider bearing
with completely smooth inclined surfaces. Experimental results
showed that the theory predicts the correct trends and that fluid
inertia can double the load capacity at modified Reynolds number
(Re of about 10) compared to that predicted by the Reynolds
equation. In the range of modified Re number below unity the
fluid inertia effect was found negligible and the difference be-
tween the NS equations solution and the hydrodynamic lubrica-
tion theory was insignificant.

Several analyses were published in recent years that evaluated
the validity of the Reynolds equation in cases where surface
roughness is included. This was done by comparing pressure dis-
tributions and load capacities obtained from the Stokes or NS
equations with these obtained from the Reynolds equation. Arghir
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et al. [7] treated the case of laminar, isothermal, shear driven flow
between closely spaced parallel walls of which one has a regular
macro-roughness pattern of rectangular, sinusoidal, or triangular
grooves. The wavelength and amplitude of each pattern was of the
same order as the distance between the walls. It was shown that
with increasing magnitude of the convective inertia, all macro-
roughness patterns produced a net lift force. Such a load cannot be
obtained from the Reynolds equation in symmetric converging
diverging film thickness geometries if cavitation is not considered
and the pressure distribution is antisymmetric. In [7] the possibil-
ity of cavitation in low pressure regions was completely over-
looked by the authors thus making their comparison questionable.

Odyck and Venner [8] investigated the validity of the Reynolds
equation for iso-viscous, Newtonian and incompressible flow be-
tween two surfaces having roughness in the form of a sinus wave.
Both the Stokes and the Reynolds equations were solved to obtain
and compare the pressure distributions and load carrying capaci-
ties. It was found that the differences between the two solutions
depend on the ratio of the film thickness to the roughness feature
wavelength. Cavitation was considered by simply eliminating
negative pressures (half Sommerfeld cavitation condition).

Song et al. [9] used the full NS equations to find the validity
limits of the Reynolds equation in the case of an incompressible
lubricating flow between a fixed upper sinusoidal wall with one
period and a lower plate moving with a constant speed. Results
were obtained for an extremely low Reynolds number in the order
of 1075, The differences in the maximum pressure obtained from
the NS and lubrication theory where very small when the average
film thickness was 0.075 wm but became large when this thick-
ness was five times larger.

Sahlin et al. [10] studied the effect of two-dimensional (2D)
micro-patterned surfaces in hydrodynamic lubrication between
two parallel walls. The pressure distribution and the load carrying
capacity obtained from the Stokes and the NS equations were
compared for different Reynolds numbers and pattern geometry
parameters. The authors concluded that the micropattern on one of
the surfaces causes an appreciable load carrying capacity mainly
due to the advective terms in the NS equations. However, the
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Fig. 1 The geometrical model: (a) a segment of infinitely long strip of dimples;
(b) a cross section at the middle of one imaginary cell

authors completely overlooked potential effect of cavitation on
their pressure distribution. This neglected effect could well con-
tribute to load capacity even without considering the advective
terms.

In Refs. [7-10] the authors either neglected completely or
treated potential cavitation effect on load capacity with a simplis-
tic approach (either Sommerfeld or half Sommerfeld conditions)
and hence, their conclusions regarding the validity of the Rey-
nolds equation for incompressible lubricants may be inaccurate.
When dealing with compressible lubricants the cavitation is not an
issue and, hence, a clearer picture of the validity of the lubrication
theory for textured surfaces can be obtained.

Guardino et al. [11] studied both incompressible and compress-
ible flows in air riding seals using computational fluid dynamics
(CFD) analysis for the NS equations, and analytical/numerical
solutions for the Reynolds equation. The authors treated various
two-dimensional roughnesses in the form of sinusoidal waves on
an infinite Rayleigh step geometry of the stationary wall. It was
observed that surface roughness can have dramatic effects on the
streamline patterns, and can result in extensive recirculation re-
gions, particularly for large values of roughness amplitude to
clearance ratio. One of the main conclusions of the study is that
the CFD and Reynolds solutions are in good agreement for low
values of the roughness amplitude to clearance ratio. At higher
values of roughness amplitude to clearance ratio the Reynolds
equation solution underestimates the load carrying capacity com-
pared to the CFD results. The differences found between the Rey-
nolds equation and CFD solutions were larger in the case of in-
compressible flow compared to the case of compressible one.

Compressible Stokes flow in thin films was investigated by
Odyck and Venner [12]. The authors studied the differences be-
tween load capacities obtained from solutions of the Reynolds and
Stokes equations for laminar flow of a compressible medium in a
thin film containing rectangular slot geometry. They found that in
spite of local differences in the pressure at the edges of the rect-
angular slot, the two different solutions for the load carrying ca-
pacity are in good agreement.

Almgvist and Larsson [13] investigated the validity of the Rey-
nolds equation for lubricant film flows in the presence of a 2D
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ridge surface roughness located on the stationary surface. New-
tonian, non-Newtonian, piezoviscous and compressible fluids
were considered. It was found that when the ratio of film thickness
to wave length is of order 1072 or less the Reynolds equation is a
good approximation with less than 3% error in the maximum pres-
sure and in the pressure difference across the fluid film. When the
above ratio is of order 107! the deviations between the Reynolds
and the full CFD solutions become up to 8% in the maximum
pressure and up to 30% in the pressure difference across the fluid
film.

The comparisons made by Almgqvist and Larsson [13] addressed
the local pressure extremum vis-4-vis the load carrying capacity.
They showed that although the error in the pressure field may be
large, the integrated effect in the form of load carrying capacity
may be small and even negligible.

From the foregoing literature survey it seems that no clear con-
clusion yet exists regarding the validity limits of the Reynolds
lubrication theory for cases of surface texture like LST. It is the
purpose of the present work to clarify this issue for the case of a
hydrostatic compressible gas flow, applicable, for example, in
high pressure LST gas seals. This will be accomplished by com-
paring the pressure distribution and the load carrying capacity
obtained from a CFD solution of the NS equations and these ob-
tained from the Reynolds equation.

2 Analytical Model

Figure 1(a) shows a segment of an infinitely long stationary
strip of microdimples. The dimples have a spherical geometry
with a base radius r,,. Each dimple is located within an imaginary
rectangular cell of sides 2r; X 2ry. A cross section through one of
the dimples is presented in Fig. 1(b) showing the dimple depth h,
and its location on a top surface that is separated by a nominal
clearance, ¢, from another bottom stationary flat and smooth sur-
face. The origin of a coordinate system (x,y,z) is located at the
bottom surface just below the center of the dimple as shown in
Fig. 1(b). The x axis points in the direction of a pressure drop. The
local film thickness & between the nominally parallel surfaces is
given by
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where the local dimple depth £, is:
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The full three-dimensional Navier-Stokes equations for steady
state Newtonian ideal gas in a laminar flow, neglecting external
forces, are:
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where i and j are dummy and free indices, respectively.

The steady state continuity equation for compressible gas flow
is:

J
a—)q(l)ui) =0 4)

Note that the coordinates x;, x,, and x3 in Egs. (3) and (4) stand
for x, y, and z, respectively.

Assuming an isothermal flow, the ideal gas state equation is
given by:
L const (5)

p

Equations (3)—(5) represent the steady state five scalar equations
for the five unknown functions: the three velocity components, the
pressure, and the density fields. The appropriate no slip boundary
conditions for the velocity at the two stationary walls (see Fig.
1(D)) are:

u(x,y=0,z) =ulx,y=h,z) =0 (6)

The inlet and outlet pressure boundary conditions are:

plx=-r,y,2)=p,; plx=r,y,20)=p, (7)

Periodicity of the surface texturing in the z direction, and symme-
try (see Fig. 1(a)) about the x axis, permit solving the pressure and
velocity distributions within just one half of one imaginary cell.
From the periodicity, symmetry, and continuity of the velocity
distribution it follows that:

”z(xay’z=rl)=’h(x,y’z=0)=0 (8)

The 2D, steady state form of the Reynolds equation for a com-
pressible, Newtonian, hydrostatic, ideal gas flow is given by:

J ap J dp
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with the appropriate boundary conditions:

plx==ri,2)=p,; plx=r,z)=p,

p
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3 Numerical Solution

Equation (9) is rendered dimensionless by using 7, and ¢ to
scale lengths and p,, to scale the pressure field, namely

X 14

4 h
=—; Z=—; P=—; =—;
)2 r Pa c

P
The dimensionless local film thickness, H(X,Z), is given by:

(12)
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where e=h,/2r, is the dimple aspect ratio, and d=c/2r, is the
dimensionless clearance. Substitution of the dimensionless param-
eters into Eq. (9) yields the Reynolds equation in its dimension-

less form:
a( P\ a9 P
—|\ P — |+ —|PE—]=0
ox oxX iz 0z

Equation (14) is nonlinear, but by introducing a new dimension-
less variable Q defined as:

(14)

Q=P (15)

it may be rewritten as a linear partial differential equation for Q:
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Equation (16) can be solved for the Q distribution over a range of
the dimensionless parameters & and e (see Eq. (13)), and the rel-
evant boundary conditions (10) and (11) for Q:

O(x=-R,,Z) = P>

0’

OX=R.,Z)=1 (17)

a0 aQ
—(X,Z=R))=—(X,Z=0)=0 18
ﬂZ( ) (?Z( ) (18)
where Ry=r/r,.

Journal of Tribology

(x2+zz)—(L

&€

_—) X+72<1
8ed 26

(13)
X+7'=1

A finite difference method using a non-uniform grid was used
to solve the Reynolds Eq. (16) with boundary conditions (17) and
(18). The discretization of Eq. (16) leads to a set of linear alge-
braic equations for the nodal values of Q(X,Z). This equation set
was solved using a successive over-relaxation Gauss—Seidel itera-
tive method. The solution of Eq. (16) provides, through the trans-
formation (15), a pressure distribution that can be integrated over
the cell area to obtain its load carrying capacity.

The full NS equations were solved using a commercial finite
element software ANSYS/FLOTRAN. A tetrahedral element “FLUID
142 was used with a denser grid within the dimple and near its
boundary where the film thickness gradient is discontinuous. Ad-
ditional refinement of elements was done near the stationary top
and bottom walls where significant velocity gradients can exist.
The tri-diagonal matrix algorithm (TDMA) and preconditioned
conjugate residual solvers were used to obtain the velocity and
pressure distributions, respectively.

The comparison between the solutions of the Reynolds equation
and the full NS equations was performed for a typical LST case of
a dimple having a diameter 2r,=100 wm. The range of dimple
depth was 5 um=<h,<50 um and of the clearance | um=<c
<5 wum. These values correspond to a range of the dimensionless
parameters & from 0.05 to 0.5 and & from 0.01 to 0.05, respec-
tively. The value of h,=5 um characterizes a shallow dimple
while the value of /,=50 um is the maximum possible depth of a
hemispherical dimple.
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Fig. 2 Streamlines of the gas flow at the mid cross section of
a dimple: (a) without flow recirculation, c=3 um, h,=15 um; (b)
with flow recirculation at the top of the dimple, ¢=5 um, h,
=20 um

A length 2r;=110 um was selected for the imaginary cell. This
results in very large area density of the dimples where each
dimple covers 65% of its cell area leaving only 5 uwm between the
cell and dimple boundaries. The very large area density was se-
lected to represent an extreme case where the largest deviations
between the Reynolds and the NS solutions may be expected. The
dynamic viscosity u was 18.21 X 107 Pa's (air dynamic viscosity
at 20°C), and the pressure drop across the dimples strip was
0.1 MPa, which is a typical value for, for example, hydrostatic gas
seals.

The non-uniform grid for solving the Reynolds equation had 33
divisions along the dimple radius and additional 22 divisions out-
side the dimple. Convergence and accuracy were acceptable when
the difference in the pressure distribution between two consecu-
tive iterations was less than 1%. Convergence and accuracy of the
finite element solution of the NS equations was ensured by dou-
bling the number of elements until the difference in load carrying
capacity was less that 1%. This resulted in 80,000-110,000 nodes
depending on the dimple depth.

4 Results and Discussion

4.1 Inception of Recirculation in the Flow Field. A basic
assumption for the validity of the Reynolds equation states that
compared to the velocity gradients du,/dy and du,/dy all other
velocity gradients are small and may be neglected. In this case a
typical flow field will have homogenous streamlines with opened
contours as shown in Fig. 2(a). On the other hand, violation of
this basic assumption would lead to regions of flow recirculation
with streamlines having closed contours as in Fig. 2(b). The in-
ception of recirculation in the flow field was investigated for the
full range of &€ and & values. The results are presented in Fig. 3
showing that for the smallest clearance 6=0.01 even a very large
dimple depth does not produce recirculation. As the clearance
increases, recirculation inception occurs at decreasing depth.

4.2 Magnitude of Pressure Gradients Across the Film
Thickness. Another assumption for the Reynolds equation valid-
ity is a negligible pressure change across the film thickness. Fig-
ures 4(a) and 4(b) present typical isobars corresponding to the
cases (a) and (b) of Fig. 2, respectively. As can be seen there is a
good correlation between recirculation in the flow field and appre-
ciable pressure change across the film thickness. As shown in Fig.
4(a), the pressure gradients in the y direction are noticed only
close to the dimple leading and trailing edges where a discontinu-
ity in the film thickness gradient exists. Most of the dimple cross-
section area experiences negligible pressure differences in the y
direction. Figure 4(b), on the other hand, shows significant pres-

348 / Vol. 128, APRIL 2006

w 0.35
g
g 0.95 Recirculation
B \
(73 . .
% 0.15 No-Recirculation \
Z0.
\\____
0.05
0.01 0.02 0.03 0.04 0.05 0.06

Dimensionless Clearance, &

Fig. 3 Transition from recirculation (above) and no circulation
(below) and the recirculation inception line as function of the
aspect ratio £ and dimensionless clearance 6

sure gradients in the y direction not only at the leading and trailing
edges but also in the rest of the dimple cross section.

4.3 Pressure Distribution Obtained From the NS and the
Reynolds Equations. Figure 5(a) presents the maximum relative
difference between the pressure distributions that were obtained
from the Reynolds equation and the NS equations. This maximum
relative difference occurs at the mid cross section of the dimple.
The maximum relative difference is shown versus & for three &
values. The dashed line in Fig. 5(a) illustrates the locus of points
related to the flow recirculation inception (see Fig. 3). As can be
seen for 6=0.01 and £=<0.4 the maximum relative difference in
the pressure distribution is less than 4%. For €>0.4 the relative
difference increases and reaches about 10% at £=0.5. For &
=0.03 the relative difference is around 10% when & <0.3. Further
increase of &, deeper into the range of recirculation flow, leads to
oscillating higher relative difference. For 6=0.05 the maximum
relative difference is about 22% at £=0.15 (the flow recirculation
inception occurs at e=0.1). Further increase of & reduces the rela-
tive difference unexpectedly to about 13% at £=0.35. This unex-
pected behavior requires more in depth investigation which is out-
side the scope of the present study.

Figure 5(b) presents the actual dimensionless pressure distribu-
tion, along the dimple centerline, for the case of 6=0.05 and &
=0.15. The “NS” and “Reynolds” lines are for the results obtained
from the NS equations and the Reynolds equation, respectively.
Clearly the pressure obtained from the NS equations is higher than
that obtained from the Reynolds equation. The maximum differ-
ence of 22% occurs close to the trailing edge at about X=0.7.
Most of the pressure change, in both cases, occurs outside the

0.115 0.1

Pa

Fig. 4

Isobars (in MPa) of the gas pressure distribution at the
mid cross section of a dimple obtained from the NS equations:
(a) without flow recirculation, c=3 um, h,=15 um; (b) with flow
recirculation at the top of the dimple, c=5 um, h,=20 um
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Fig. 5 A comparison of the pressure distributions obtained
from the NS and Reynolds equations: (a) maximum relative dif-
ference between the NS and the Reynolds equations versus
dimple aspect ratio ¢ at various dimensionless clearance val-
ues &; (b) the dimensionless pressure distribution at the mid
cross section of the dimple for 6=0.05 and £=0.15

dimple boundaries (located at X==+1) whereas inside the dimple
the pressure gradient in both cases is much smaller.

4.4 Load Carrying Capacity Obtained From the NS and
the Reynolds Equations. Figure 6 portrays the differences in the
dimensionless load carrying capacity, W, that were obtained from
the two different solutions. This parameter is obtained from the
integration of the pressure over the imaginary cell area normalized
by 4parf. The solid lines in Fig. 6 present the results obtained
from the NS equations versus the aspect ratio & for three values of
6. The single dashed line shows the results obtained from the
Reynolds equation for the entire range of € and 8. The fact that W
obtained from the Reynolds equation is independent of & and &
was also observed in Ref. [4] for an incompressible flow. As in the
case of the pressure distribution (Fig. 5(b)) the load capacity, W,
obtained from the NS equations is larger than that obtained from
the Reynolds equation, and the difference increases with increas-
ing dimensionless clearance 6. The maximum difference between
the results obtained from the two solutions is about 2% at &
=0.01 for £<<0.35, 7% at 6=0.03 and no more than 11% at the
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Fig. 6 Comparison of load carrying capacities, W, obtained
from the NS (solid lines) and the Reynolds (dashed line) equa-
tions versus dimple aspect ratio £ at various dimensionless
clearance values o
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Fig. 7 A load capacity relative error map indicating that for a
wide range of clearances, 6 and pressure ratios, p,/p,, the Rey-
nolds equation is valid.

largest clearance of 6=0.05. Note that the maximum difference in
load carrying capacity is about half of the relative difference in the
pressure distribution for the same values of & and & (see Fig.
5(a)). This is due to a smoothening effect of the integrated pres-
sure which is much less affected by large local differences in the
pressure distribution. Also, the aspect ratio of the dimple, €, has a
very little effect on the load carrying capacity, W, obtained from
the NS equations.

Interesting useful information was obtained when the relative
error AW=1-Wg./ Wyg (where Wyg and Wy, are the load capaci-
ties obtained from the NS and the Reynolds equation solutions,
respectively) was calculated for a wide range of the pressure ratio
1=<p,/p,<4. Tt was found that AW varies linearly with p,/p,,, is
very little affected by & (roughly as 5'°) and negligibly affected
by e. Figure 7 presents an “error map” showing the combinations
of p,/p, and & values corresponding to a transition from a lower
(under the line) to higher (above the line) value of AW as indi-
cated for each of the transition boundaries. Hence, for 6=0.01, for
example, the Reynolds equation predicts the load capacity to
within 5% of the result obtained from the NS equations through-
out the full range of pressure ratios. At 6=0.03 the error will be
less than 5% for pressure ratio below 1.6, and more than 15% for
pressure ratio above 4. These results show that for all practical
values of pressures, clearances, and LST parameters the Reynolds
equation is valid with respect to load capacity predictions.

5 Conclusion

A finite difference algorithm was used to solve the Reynolds
equation for a hydrostatic compressible flow over a single dimple.
The Reynolds equation solution was then compared with a solu-
tion of the Navier-Stokes equations for the same problem. It was
found that the maximum relative difference in the pressure distri-
bution between the above two solutions occurs in the midsection
of the dimple. Significant pressure variations across the film thick-
ness were found near the leading and trailing edges of the dimple
where the film thickness gradient is discontinuous. However,
these local differences have little effect on the load carrying ca-
pacity. For clearances, c, that are 3% or less of the dimple diam-
eter the load capacity prediction by the Reynolds equation is valid
over the entire range of practical dimple depth and pressure ratios.
At clearances as large as 5% of the dimple diameter, and pressure
ratios about 2.5, the error in the load carrying capacity may reach
15%. Thus, the use of the Reynolds equation yields reasonable
load capacity predictions for a wide range of realistic clearances
and pressures. For higher clearances, employment of the Reynolds
equation provides a rougher estimate of the load carrying capacity.
However, since in the above range of parameters the Reynolds
equation underestimates the load it can safely be used.

Nomenclature
¢ = clearance

h, = dimple depth

APRIL 2006, Vol. 128 / 349



h = local film thickness inside the imaginary cell
H = dimensionless film thickness H=h/c
p. = ambient pressure
p, = high pressure
P = dimensionless pressure, P=p/p,
r, = dimple radius
u; = velocity in j direction
u = velocity vector
x,y,z = Cartesian coordinates
X,Z = dimensionless coordinates, X=x/ Iy, Z=21T1,
¢ = dimple aspect ratio, e=h,/2r,
6 = dimensionless clearance, d=c/ 2r,
= dynamic viscosity
p = density
References

[1] Etsion, L., 2005, “State of the Art in Laser Surface Texturing,” ASME J. Tri-
bol., 127(1), pp. 248-253.

[2] Brizmer, V., Kligerman, Y., and Etsion, L., 2003, “A Laser Surface Textured
Parallel Thrust Bearing,” Tribol. Trans., 46(3), pp. 397-403.

[3] Etsion, 1., Kligerman, Y., and Halperin, G., 1999, “Analytical and Experimen-
tal Investigation of Laser-Textured Mechanical Seal Faces,” Tribol. Trans.,

350 / Vol. 128, APRIL 2006

42(3), pp. 511-516.

[4] Etsion, 1., and Halperin, G., 2002, “A Laser Surface Textured Hydrostatic
Mechanical Seal,” Tribol. Trans., 45(3), pp. 430-434.

[5] Etsion, L., Halperin, G., Brizmer, V., and Kligerman, Y., 2004, “Experimental
Investigation of Laser Surface Textured Parallel Thrust Bearings,” Tribol.
Lett., 17(2), pp. 295-300.

[6] Tichy, J. A., and Chen, S. H., 1985, “Plain Slider Bearing Load Due to Fluid
Inertia-Experiment and Theory,” ASME J. Tribol., 107(1), pp. 32-38.

[7] Arghir, M., Roucou, N., Helene, M., and Frene, J., 2003, “Theoretical Analysis
of the Incompressible Laminar Flow in Macro-Roughness Cell,” ASME J.
Tribol., 125(2), pp. 309-318.

[8] Odyck van, D. E. A., and Venner, C. H., 2003, “Stokes Flow in Thin Films,”
ASME 1J. Tribol., 125(1), pp. 121-134.

[9] Song, D. J., Seo, D. K., and Shults, W. W., 2003, “A Comparison Study
Between Navier-Stokes Equation and Reynolds Equation in Lubricating Flow
Regime,” Int. J. Kor. Soc. Mech. Eng., 17(4), pp. 599-605.

[10] Sahlin, F, Glavatskih, S. B., Almgvist, T., and Larsson, R., 2005, “Two-
Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lu-
brication,” ASME J. Tribol., 127(1), pp. 96-102.

[11] Guardino, C., Chew, J. W., and Hills, N. J., 2004, “Calculation of Surface
Roughness Effects on Air-Riding Seals,” ASME J. Eng. Gas Turbines Power,
126(1), pp. 75-82.

[12] Odyck van, D. E. A., and Venner, C. H., 2003, “Compressible Stokes Flow in
Thin Films,” ASME J. Tribol., 125(3), pp. 543-551.

[13] Almgqvist, T., and Larsson, R., 2004, “Some Remarks on the Validity of Rey-
nolds Equation in the Modeling of Lubricant Film Flows on the Surface
Roughness Scale,” ASME J. Tribol., 126(4), pp. 703-710.

Transactions of the ASME



